康普顿效应在生活中的应用(康普顿)

sddy008 干货分享 2022-10-30 100 1

投资小白不会理财怎么办?关注美盛财富通,本篇文章为《康普顿》,希望你阅读之后对此有更深的了解。

文章目录导航:

康普顿效应证明了什么?

康普顿效应证明了光子具有粒子性。光子在介质中和物质微粒相互作用时,可能使得光向任何方向传播。

光子和电子碰撞时,光子的一些能量转移给了电子,康普顿假设光子和电子、质子这样的实物粒子一样,不仅具有能量,也具有动量,碰撞过程中能量守恒,动量也守恒。

短波长电磁辐射射入物质而被散射后,在散射波中,除了原波长的波以外,还出现波长增大的波,散射物的原子序数愈大,散射波中波长增大部分的强度和原波长部分的强度之比就愈小。

康普顿效应需要注意:

1、散射波长改变量lD的数量级为10-12m,对于可见光波长l~10-7m,lDl,所以观察不到康普顿效应。

2、散射光中有与入射光相同的波长的射线,是由于光子与原子碰撞,原子质量很大,光子碰撞后,能量不变,散射光频率不变。

康普顿效应的发现,以及理论分析和实验结果的一致,不仅有力地证实了光子假说的正确性,并且证实了微观粒子的相互作用过程中,也严格遵守能量守恒和动量守恒定律。

康普顿纳米机油怎么样?

康普纳米陶瓷机油挺不错的,它所使用的抗磨剂能够显著提高油品的极压性与抗磨性,最终才优化出纳米陶瓷机油配方。

与国内外同类别机油相比,该项目研制的纳米陶瓷机油具有优异的极压性能、抗磨性能和氧化安定性能。试车考核实验证明,与参比油相比,纳米陶瓷机油可使车辆发动机连杆轴瓦平均失重降低约30%,排气阀平均失重降低约40%,换油周期可延长一倍。

质量标准

公司通过挪威船级社(DNV)ISO 9001:2000国际质量体系认证,严格按照质量体系的要求控制。

产品生产过程,以保证产品品质。在产品质量标准方面,对执行国家标准和行业标准的产品均采用标准上限进行企业内控,其他企业标准则根据美国石油学会(API)和美国汽车工程师协会(SAE)标准要求制定。

公司是中国标准化协会汽车养护用品技术推进委员会副主任单位,主持制定了三项汽车养护用品行业标准(节气门清洗剂 CAS 161-2008、发动机润滑系清洗剂 CAS 162-2008、汽油发动机电喷系统清洗剂 CAS 163-2008)。

参与制定了三项国家标准(发动机内部清洗剂、发动机外部保护剂、水箱清洗剂)。

康普顿润滑油多种产品取得美国石油学会API认证,获得API标志使用权,并分别获得多家国内外著名厂商的认证,成为其装车或服务用油。2002年开始,国家技术监督局对制动液生产企业实行生产许可证管理制度,康普顿制动液首批通过验收。

路邦汽车养护品也为国内多家汽车主机厂配套,成为其指定售后维护保养用品,与多家4.S集团成为战略合作伙伴,以优质的产品和服务共同为车辆提供满意的维护服务。

公司长期与国外添加剂公司、国内科研院所及高校等进行科研合作,进行产品升级及新产品研发,使公司始终保持产品技术领先优势。公司曾与美国市场同步,在国内市场率先推出SJ、SL、SM、SN级汽油机油和CI-4、CJ-4级柴油机油,多次引领中国润滑油产品升级换代的潮流。

2005年成功研制推出的康普顿纳米陶瓷机油和路邦纳米陶瓷抗磨剂创造了无机油行车5050公里的基尼斯纪录,标志着纳米技术在润滑油领域的研究进入新的应用阶段,揭开了汽车养护的崭新篇章。2007年,康普顿纳米陶瓷机油通过省级科技成果鉴定,获得科技进步三等奖。

康普顿润滑油荣获“顾客满意润滑油品牌”和“中国500最具价值品牌”等荣誉。在客户服务方面,公司设有80.0免.费服.务热线和产品防伪查询热线,有专人随时为消费者提供周到、专业的服务;为了维护消费者利益,公司产品均投保产品质量责任保险。

该项目研制的纳米陶瓷机油在发动机台架试验表明,该机油与商用同级别机油参比,在燃油消耗率、CO排放量、HC排放量等方面下降明显,节能减排效果显著。

在建设节约型社会的背景下,进行纳米陶瓷机油的推广具有显著的经济效益和深远的社会效益,它的推广将为润滑油技术在汽车领域的发展做出新的贡献。

康普顿纳米陶瓷机油利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平(1~100nm),使得材料的强度、韧性和超塑性大幅度提高。

克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。

康普顿效应的优缺点

优点:康普顿散射只有在入射光的波长与电子的康普顿波长相比拟时,散射才显著,这就是选用X射线观察康普顿效应的原因。而在光电效应中,入射光是可见光或紫外光,所以康普顿效应不明显。

缺点:如果光子和这种电子碰撞,相当于和整个原子相碰,碰撞中光子传给原子的能量很小,几乎保持自己的能量不变。这样散射光中就保留了原波长。的谱线.由于内层电子的数目随散射物原子序数的增加而增加,所以波长为λ0的强度随之增强,而波长为λ的强度随之减弱。

实验事实

明确地摆在物理学家面前,可就是找不到正确的解释。1919年康普顿也接触到γ散射问题。他以精确的手段测定了γ射线的波长,确定了散射后波长变长的事实。后来,他又从γ射线散射转移到X射线散射。钼的Kα线经石墨晶体散射后,用游离室进行测量不同方位的散射强度。

通过康谱顿发表的部分曲线可以看出,X射线散射曲线明显地有两个峰值,其中一个波长等于原始射线的波长(不变线),另一个波长变长(变线),变线对不变线的偏离随散射角变化,散射角越大,偏离也越大。

龙蟠机油和康普顿哪个好

;     龙蟠和康普顿机油品牌对比,两者都是性能优秀的品牌机油,使用效果上都有较好的表现。

      净威润滑油是龙蟠科技在2008年为进军汽机油市场而精心打造的一款拳头产品。 “净威”的名称有着多重含义。其中“净”字,意取“干净”的“净”,既暗含了油品本身的干净和产品给发动机带来的洁净体验,也表明了净威产品使用后,放出来的废油比其它品牌的同等级油更加干净的品质优势;而“威”字则主要体现净威产品卓越的动力增强性能。

      康普顿机油不仅在国内有着良好的口碑,其机油产品也通过了多家世界著名厂商的认证,其中康普顿CH-4级柴机油通过了MTU Cat.2的认证,CJ-4级和CNG机油分别通过了康明斯CES 20081和CES 20074的原厂认证。康普顿推出的CK-4级别的极保XD1000采用新一代摩擦改进剂,可有效提升燃油经济性。在卡特C13发动机试验中,CAT ECF-3表现超越标准值40%,有效保持活塞清洁,同时延长发动机寿命并且降低机油消耗。能帮助发动机保持良好的工作性能,有效延长换油期。

      

康普顿效应的优点和缺点

优点:康普顿散射只有在入射光的波长与电子的康普顿波长相比拟时,散射才显著,这就是选用X射线观察康普顿效应的原因。而在光电效应中,入射光是可见光或紫外光,所以康普顿效应不明显。

缺点:如果光子和这种电子碰撞,相当于和整个原子相碰,碰撞中光子传给原子的能量很小,几乎保持自己的能量不变。这样散射光中就保留了原波长的谱线。由于内层电子的数目随散射物原子序数的增加而增加,所以波长为λ0的强度随之增强,而波长为λ的强度随之减弱。

1923年,美国物理学家康普顿在研究x射线通过实物物质发生散射的实验时,发现了一个新的现象,即散射光中除了有原波长λ0的x光外,还产生了波长λλ0 的x光,其波长的增量随散射角的不同而变化。这种现象称为康普顿效应(Compton Effect)。

用经典电磁理论来解释康普顿效应时遇到了困难,康普顿借助于爱因斯坦的光子理论,从光子与电子碰撞的角度对此实验现象进行了圆满地解释。我国物理学家吴有训也曾对康普顿散射实验作出了杰出的贡献。

康普顿效应是指?

入射γ光子与原子中电子之间的弹性撞碰,碰撞后光子损失能量,改变其运动方向,而电子获得能量从原子中飞出去,这种现象称为康普顿效应,又称为康普顿散射。从原子中飞出去的电子称为康普顿电子。在康普顿效应中,入射γ光子并不消失,在束缚电子上,在自由电子上都可以发生。正因为这样,康普顿效应在大多数情况下,在原子的外层电子上发生。

散射光子Pγ和康普顿电子Pe的能量关系如图1-2-4所示。

得到反冲电子的动能Ee:

根据式(1-2-7)和式(1-2-8)看出,散射光子和反冲核的能量均与散射角有关。

当θ=0时,光子从电子旁边掠过而未受到散射,此时能量没有损失,即v=v0,在这种情况下反冲电子动能Ee=0。

当θ=180°时,入射光子被反散射回来。这时入射光子正好与电子正碰,因而散射光子的能量损失最小,其值为:

当入射光子的能量hv0 >> 0.51MeV时,向后散射的γ光子的能量大约为0.25MeV。在θ=180°时,反冲电子获得的动能为最大,其值为:

康普顿效应发生在γ光子和原子中“自由电子”之间,康普顿散射截面实际上是原子中电子散射截面。整个原子的康普顿散射截面бc是原子中各个电子的康普顿散射截面的线性叠加,即бc=Zбc,e。

当入射γ光子能量很低时(hv0≈m0c2),康普顿效应的原子散射截面为:

式中 γ0——经典电子半径,2.8×10-13cm。

此时,бc仅与Ζ成正比,与γ光子能量无关。

当入射γ光子能量较高时(hv0 >> m0c2):

此时,бc与Z成正比,与γ光子能量近似成反比。

γ光子在通过单位距离物质时,其强度会变弱,通常用康普顿减弱系数μe表示。μc与吸收体的原子序数Ζ和单位体积内的原子数成正比,即与吸收体内单位体积的电子数成正比,其公式为:

式中 бc?e——每个电子的康普顿散射截面;ρ——介质密度;A——原子量;NA——阿佛加德罗常数,6.022045×1023。

当γ光子的能量hv0在0.25~2.5MeV范围内,бc?e可视为常数,而ZNAρ/ A是吸收介质单位体积中的电子数(电子密度),在一定条件下Z / A也可视为常数,故利用康普顿效应可测定介质的密度ρ。

五、电子对效应当γ光子从原子核旁边经过时,在原子核的库仑场作用下,γ光子转化为一个正电子e+和一个负电子e-,这种过程称为电子对效应。产生电子对效应有两个条件,一是必须有原子核参加;二是γ光子的能量hv。必须大于1.02MeV。入射光子的能量除一部分转变为正负电子对的静止能量(1.02MeV)外,其余的就作为它们的动能。关系式为:

电子对效应的截面бP与吸收物质原子序数Z和入射光子能量有关。在入射光子能量大于1.02MeV的任何范围内,бP与Z2 成正比。

γ光子通过单位距离的吸收介质时,因形成电子对效应,而导致γ射线强度减弱,用减弱系数μP表示,有经验公式:

由式(1-2-15)看出,当入射γ光子的能量hv0 < 1.02MeV,μP为负值,即根本不可能形成电子对。而当hv0 > 1.02MeV时,μP随着hv0的增加而直线上升,μP与原子序数Z2成正比关系。重核因原子序数Z大,所以在重核附近形成电子对效应的几率比在轻核附近大得多。

以上就是关于《康普顿》的内容,最后一品玉知识网小编还是要告诫大家,投资有风险,选择需谨慎,新手前期应该小额进行投资

评论

精彩评论
2024-09-09 05:14:15

这位作者的文笔极其出色,用词精准、贴切,能够形象地传达出他的思想和情感。http://www.guangcexing.net/voddetail/rEGACzXq.html